• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Neural Networks of Power: AI Unravels Knots and Tangles in Relationships between Humans, Elves and Hobbits

Neural Networks of Power: AI Unravels Knots and Tangles in Relationships between Humans, Elves and Hobbits

Photo: Wikimedia Commons

One of the most popular writers of the last century, John Ronald Reuel Tolkien, was born on January 3rd. Researchers from HSE University, AIRI and MISSIS have used machine learning to explore the social connections between the characters of his Middle-earth universe. The algorithm managed to create an accurate picture of the social structures and dynamics of the characters' relationships, providing a unique map of interactions in the epic world. The researchers believe that this approach can be applied in many areas beyond literature. The results of the work were published in IEEE Xplore.

The analysis of literary works is a complex and time-consuming process. When reading any text, the researcher needs to capture numerous nuances and features — from the author's style and word choice to the relationships between characters and their role in the plot. Most often, this work is done manually by literary critics. Ilya Makarov, Senior Research Fellow at the School of Data Analysis and Artificial Intelligence at the HSE Faculty of Computer Science, head of the ‘AI in Industry’ group at the Artificial Intelligence Research Institute (AIRI), and Anastasia Yaschenko, HSE University graduate, applied computational linguistics and machine learning tools to a series of books by John Ronald Reuel Tolkien about Middle-earth. The AI ‘read’ the books, isolating the key elements: the characters, their belonging to a particular race and their social ties. It demonstrated the results in the form of a graph, which allows us to not only trace the relationship between the characters, but also to see more clearly the structure of their social network.

Ilya Makarov

Ilya Makarov

Senior Research Fellow at the School of Data Analysis and Artificial Intelligence

‘We chose the world of Middle-earth as the basis for our analysis for a number of key reasons. Firstly, J. R. R. Tolkien's texts are widely known and loved by readers around the world, which makes the study universal and global. Secondly, the system of characters in Tolkien's books is very rich and diverse, which creates optimal conditions for such an analysis. Finally, thanks to the long history of studying Tolkien's world, a large set of metadata is available, including detailed descriptions of characters and their race, which facilitates the process of automatic clustering and verification of results.’

The main goal was to create a program that could ‘understand’ human language, analyse literary texts, identify the characters of the book and determine their relationship. This work is based on the concept of social networks. This is an approach widely used in sociology, psychology and more recently in the field of computer science. In the context of literature analysis, each character is considered as a node, and the interactions between them are the edges connecting these nodes. When two characters interact with each other in the text, a connection, or edge, is established between their nodes. The more interactions occur between the characters, the stronger this edge is.

The use of machine learning algorithms has made it possible to automatically analyse texts and identify such interactions between characters, turning literary works into simulated social networks. Named Entity Recognition (NER), a natural language processing technology was used to automatically identify and classify entities in the text, such as names, places and organisations.

This technology helped scientists to create a list of each unique character mentioned in the books. Further semantic analysis allowed them to determine the race of each character. It was conducted by analysing the context and linking each character to a specific race based on the words and phrases that accompany his mention. For example, if a character is often referred to in context with the words ‘elf’ or ‘elvish; the algorithm classifies them as an elf. Due to the large amount of metadata of J. R. R. Tolkien's characters (races, related relationships, belonging to a certain kingdom, etc.) the researchers chose racial characteristic to interpret communities, as every character in the universe belongs to a certain race.

In addition, the use of named entities and semantic analysis of the text allowed researchers to determine not only the connection between the characters, but also the nature of these relationships — friendship, enmity or neutral relations. Artificial intelligence managed to identify complex social relationships between the characters and divide the characters into groups.

It is especially important that this approach is not limited only to The Lord of the Rings, but can be applied to any text, opening up new opportunities for automated research in literature.

‘Our study contains a sequence of steps that can be used to extract named entities and their relationships based on other texts. For example, to identify the relationship between the motives of works by different authors or to analyse complex legal documents,’ said Ilya Makarov.

See also:

Scientists Propose Star-Shaped Diffusion Model

Scientists at the AI Research Centre and the Faculty of Computer Science at HSE University, the Artificial Intelligence Research Institute (AIRI), and Sber AI have come up with novel architecture for diffusion neural networks, making it possible to configure eight distinct types of noise distribution. Instead of the classical Markov chain model with Gaussian distribution, the scientists propose a star-shaped model where the distribution type can be selected and preset. This can aid in solving problems across various geometric modalities. The results were presented at the NeurIPS 2023 conference.

‘Like Electricity, AI Can Bring Incredible Benefits’

Developments in the field of artificial intelligence are gradually taking over the world. AI has the potential to bring incredible benefits to the global economy and our quality of life, but it also creates new challenges. Panos Pardalos, Professor at the University of Florida, Academic Supervisor of the Laboratory of Algorithms and Technologies for Networks Analysis (Nizhny Novgorod), covered these issues, along with other related topics, in his recent report.

Russian Researchers Improve Neural Networks' Spatial Navigation Performance

Researchers at HSE University, MISiS National University of Science and Technology, and the Artificial Intelligence Research Institute (AIRI) have developed an enhanced approach to reinforcement learning for neural networks tasked with navigation in three-dimensional environments. By using the attention mechanism, they managed to improve the performance of a graph neural network by 15%. The study results have been published in IEEE Access.

‘You Need to Know a Lot of Ideas and Algorithms, Come Up with Something Unconventional’

A student of the HSE Faculty of Computer Science, Andrey Kuznetsov, has become the winner of the 2024 Data Fusion Contest. He took first place in solving geoanalytics tasks, and also won the special ‘Companion’ category. The competition took place as part of the 2024 Data Fusion conference on big data and AI technologies. Researchers from HSE University presented the results of their work and demonstrated applied developments at the conference.

‘We Need to Learn to Communicate with Artificial Intelligence Services’

An online course 'What is Generative AI?’ has been launched on the Open Education platform, which will help students learn more about how to properly communicate with neural networks so that they can perform tasks better. Daria Kasyanenko, an expert at the Continuing Education Centre and senior lecturer at the Big Data and Information Retrieval School at the Faculty of Computer Science, spoke about how generative AI works and how to create content with its help.

Artificial Intelligence Tested by Kant Philosophy

The Baltic Federal University (Kaliningrad) recently hosted an International Congress entitled ‘The World Concept of Philosophy’ in honour of the 300th anniversary of the birth of the philosopher and thinker Immanuel Kant. The event brought together about 500 scientists and experts from 23 countries. HSE Rector Nikita Anisimov took part in the opening plenary session of the congress titled ‘Critique of Artificial Intelligence: Being and Cognition in the Context of Artificial Intelligence Development.’

HSE University to Reward Students Who Write Their Thesis Using AI

HSE University has launched a competition for solutions using artificial intelligence technology in theses work. The goal of the competition is to evaluate how students use tools based on generative models in their 2024 graduation theses (GT).

Production of the Future: AI Research Centre Presents Its Developments in Manual Operations Control Systems

Researchers from the HSE AI Research Centre have built a system for the automated control of manual operations, which finds application in industrial production. The system facilitates the process of monitoring objects and actions, as well as controlling the quality of their execution.

HSE and Yandex to Expand Collaboration in Training AI Specialists

Over the next ten years, the partnership between Yandex and the HSE Faculty of Computer Science (FCS) will broaden across three key areas: launching new educational programmes, advancing AI research, and exploring the application of generative neural networks in the educational process. Established by HSE University and Yandex a decade ago, the Faculty of Computer Science has since emerged as a frontrunner in training developers and experts in AI and machine learning, with a total of 3,385 graduates from the faculty over this period.

‘The Goal of the Spring into ML School Is to Unite Young Scientists Engaged in Mathematics of AI’

The AI and Digital Science Institute at the HSE Faculty of Computer Science and Innopolis University organised a week-long programme for students, doctoral students, and young scientists on the application of mathematics in machine learning and artificial intelligence. Fifty participants of Spring into ML attended 24 lectures on machine learning, took part in specific pitch sessions, and completed two mini-courses on diffusion models—a developing area of AI for data generation.