• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

HSE Scientists Optimise Training of Generative Flow Networks

HSE Scientists Optimise Training of Generative Flow Networks

© iStock

Researchers at the HSE Faculty of Computer Science have optimised the training method for generative flow neural networks to handle unstructured tasks, which could make the search for new drugs more efficient. The results of their work were presented at ICLR 2025, one of the world’s leading conferences on machine learning. The paper is available at Arxiv.org.

Generative Flow Networks (GFlowNets) are a class of machine learning algorithms that build complex objects step by step. Researchers use them to search for new proteins and drugs, and to optimise transport systems. 

For GFlowNets to discover such complex structures, researchers specify the desired properties of the target object. The closer the network’s proposed solution is to these properties, the higher the reward it receives. GFlowNets aim to solve problems in a way that maximises their reward. They do not rely on data directly, but instead on the reward, which is computed using an equation known as the value function.

The search for a complex object can be compared to assembling a Lego model, where pieces are added step by step until the object is complete, with each model assigned a specific value—for example, a plant model might be valued higher than an animal model. Unlike other machine learning methods that would strive to construct a plant at any cost, GFlowNets generate a variety of objects—but plants more frequently than animals—because the reward for plants is higher.

In this type of search, GFlowNets rely on two stochastic policies that operate together: a forward policy and a backward policy. The forward policy can be thought of as a construction foreman, deciding the next step and estimating the probability of the subsequent state, while the backward policy acts as a deconstruction expert, identifying the preceding step. Maintaining balance between these flows is crucial but difficult to achieve. First, it requires significant computing power. Second, backward policies lack flexibility: researchers usually prevent them from adapting during the search or from observing the actions of the forward policy.

HSE scientists have developed a way to optimise backward policies using a method called Trajectory Likelihood Maximisation (TLM). They refined the backward policy’s algorithms so that it can be continuously checked against the steps of the forward policy.

'We designed the search for the optimal solution to resemble a negotiation, where both sides are ready to adjust their positions. In highly uncertain problems, the backward policy serves only as an auxiliary tool that improves the results of the forward policy. Our goal was to make the backward policy more flexible, and we finally succeeded,' explains Timofey Gritsaev, co-author of the paper and Research Assistant of the Centre for Deep Learning and Bayesian Methods at the HSE FCS AI and Digital Science Institute.

After implementing TLM, the reward function that measures the backward model’s success became more complex. Nevertheless, despite this increased complexity, the overall search system became faster and more efficient.

'Our method explores the space of possible solutions noticeably faster and identifies more high-quality options. Overall, this approach brings generative models closer to reinforcement learning methods,' explains Nikita Morozov, Junior Research Fellow of the Centre for Deep Learning and Bayesian Methods at the AI and Digital Science Institute of the HSE FCS.

The authors of the study are confident that their work will benefit specialists using GFlowNets across various fields, including the search for new medicinal compounds, the development of materials with specific properties, and the fine-tuning of large language models. Thanks to these networks’ ability to efficiently explore vast solution spaces and quickly identify the best options, the demand on computing power can be significantly reduced.

See also:

HSE University to Host Second ‘Genetics and the Heart’ Congress

HSE University, the National Research League of Cardiac Genetics, and the Central State Medical Academy of the Administrative Directorate of the President will hold the Second ‘Genetics and the Heart’ Congress with international participation. The event will take place on February 7–8, 2026, at the HSE University Cultural Centre.

HSE University Develops Tool for Assessing Text Complexity in Low-Resource Languages

Researchers at the HSE Centre for Language and Brain have developed a tool for assessing text complexity in low-resource languages. The first version supports several of Russia’s minority languages, including Adyghe, Bashkir, Buryat, Tatar, Ossetian, and Udmurt. This is the first tool of its kind designed specifically for these languages, taking into account their unique morphological and lexical features.

HSE Scientists Uncover How Authoritativeness Shapes Trust

Researchers at the HSE Institute for Cognitive Neuroscience have studied how the brain responds to audio deepfakes—realistic fake speech recordings created using AI. The study shows that people tend to trust the current opinion of an authoritative speaker even when new statements contradict the speaker’s previous position. This effect also occurs when the statement conflicts with the listener’s internal attitudes. The research has been published in the journal NeuroImage.

Language Mapping in the Operating Room: HSE Neurolinguists Assist Surgeons in Complex Brain Surgery

Researchers from the HSE Center for Language and Brain took part in brain surgery on a patient who had been seriously wounded in the SMO. A shell fragment approximately five centimetres long entered through the eye socket, penetrated the cranial cavity, and became lodged in the brain, piercing the temporal lobe responsible for language. Surgeons at the Burdenko Main Military Clinical Hospital removed the foreign object while the patient remained conscious. During the operation, neurolinguists conducted language tests to ensure that language function was preserved.

HSE MIEM and AlphaCHIP Innovation Centre Sign Cooperation Agreement

The key objectives of the partnership include joint projects in microelectronics and the involvement of company specialists in supervising the research activities of undergraduate and postgraduate students. Plans also focus on the preparation of joint academic publications, the organisation of industrial placements and student internships, and professional development programmes for the company’s specialists.

HSE University and InfoWatch Group Sign Cooperation Agreement

HSE University and the InfoWatch Group of Companies marked the start of a new stage in their collaboration with the signing of a new agreement. The partnership aims to develop educational programmes and strengthen the practical training of specialists for the digital economy. The parties will cooperate in developing and reviewing curricula, and experts from InfoWatch will be involved in teaching and mentoring IT and information security specialists at HSE University.

Scientists Discover One of the Longest-Lasting Cases of COVID-19

An international team, including researchers from HSE University, examined an unusual SARS-CoV-2 sample obtained from an HIV-positive patient. Genetic analysis revealed multiple mutations and showed that the virus had been evolving inside the patient’s body for two years. This finding supports the theory that the virus can persist in individuals for years, gradually accumulate mutations, and eventually spill back into the population. The study's findings have been published in Frontiers in Cellular and Infection Microbiology.

HSE Scientists Use MEG for Precise Language Mapping in the Brain

Scientists at the HSE Centre for Language and Brain have demonstrated a more accurate way to identify the boundaries of language regions in the brain. They used magnetoencephalography (MEG) together with a sentence-completion task, which activates language areas and reveals their functioning in real time. This approach can help clinicians plan surgeries more effectively and improve diagnostic accuracy in cases where fMRI is not the optimal method. The study has been published in the European Journal of Neuroscience.

HSE Scientists Develop DeepGQ: AI-based 'Google Maps' for G-Quadruplexes

Researchers at the HSE AI Research Centre have developed an AI model that opens up new possibilities for the diagnosis and treatment of serious diseases, including brain cancer and neurodegenerative disorders. Using artificial intelligence, the team studied G-quadruplexes—structures that play a crucial role in cellular function and in the development of organs and tissues. The findings have been published in Scientific Reports.

HSE Strategic Technological Projects in 2025

In 2025, HSE University continued its participation in the Priority 2030 Strategic Academic Leadership Programme, maintaining a strong focus on technological leadership in line with the programme’s updated framework. A key element of the university’s technological leadership strategy is its Strategic Technological Projects (STPs), aimed at creating in-demand, knowledge-intensive products and services.