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Abstract. Topic modeling has emerged over the last decade as a pow-
erful tool for analyzing large text corpora, including Web-based user-
generated texts. Topic stability, however, remains a concern: topic models
have a very complex optimization landscape with many local maxima,
and even different runs of the same model yield very different topics.
Aiming to add stability to topic modeling, we propose an approach to
topic modeling based on local density regularization, where words in a
local context window of a given word have higher probabilities to get
the same topic as that word. We compare several models with local den-
sity regularizers and show how they can improve topic stability while
remaining on par with classical models in terms of quality metrics.

1 Introduction

Over the last decade, topic modeling has become one of the standard tools in text
mining. In social sciences, topic models can be used to concisely describe a large
corpus of documents, uncovering the actual topics covered in this corpus (via
the word-topic distributions) and pointing to specific documents that deal with
topics a researcher is interested in (via the topic-document distributions) [22,23].
Apart from exploratory analysis of large text corpora, topic modeling can also
be used to mine latent variables from the documents such as [12,18].

These applications of topic modeling raise a number of problems regarding
the evaluation of topic modeling results. First, it still remains an open problem
to evaluate how “good” a topic is; the gold standard here is usually human
interpretability, and the goal is to devise automated techniques that would come
close to human estimates. Modern metrics include ones based on coherence [8,19]
and its modifications [22], pointwise mutual information [6,19,21], and topics
designed to match word intrusion and topic intrusion experiments [16].

However, apart from the actual quality of the resulting topics, topic stability
is also a very important problem for real life applications of topic modeling,
especially in social sciences. The likelihood function of a topic model is usually
very complex, with plenty of local maxima. If we considering inference in a topic
model as stochastic matrix decomposition, representing the word-document ma-
trix as a stochastic product of word-topic and topic-document matrices, we see



that for every solution (O, ®) there is an infinite number of equivalent solutions
(6S,871®) for any invertible S; e.g., all permutations of the same topics are
obviously equivalent. And there are plenty of substantially different solutions
corresponding to different local maxima of the model posterior; the model may
arrive to different local maxima depending on the randomness in initialization
and sampling. For a practical application of topic models in social sciences, such
as studies of Web content, it is highly desirable to have stable results: a social
scientist is often interested in whether a topic is “there” in the dataset, and it
would be hard to draw any conclusions if the topic was “blinking” in and out
depending on purely random factors. Besides, it would be hard to rely on a study
that cannot be reliably reproduced even in principle. Hence, it becomes espe-
cially important to develop topic models that produce stable, reproducible topic
solutions, hopefully not at the cost of their quality (i.e., topic interpretability).

In this work, we introduce a new modification of the basic latent Dirichlet
allocation (LDA) model called granulated LDA (GLDA) that assumes that topics
cover relatively large contiguous subsets of a document and assigns the same
topic with high probability to a window of words once the anchor word has been
sampled in this window. We show that GLDA produces much more stable results
while preserving approximately the same topic quality as classical topic models.

The paper is organized as follows. In Section 2, we introduce the topic models
that we will consider below and the two approaches to inference in topic models.
Section 3 contains a brief overview of regularization in topic models. Section 4
introduces our new approach to topic modeling, granulated LDA (GLDA). In
Section 5 we show experimental results that prove that granulated LDA has
solutions with similar quality or better than regular topic models but that are
much more stable; we conclude with Section 6.

2 Topic modeling

Let D be a collection of documents, and let W be the set of all words in them
(vocabulary). Each document d € D is a sequence of terms wq,...,w,, from
the vocabulary W. The basic assumption of all probabilistic topic models is
that there exists a finite set of topics T, and each occurrence of a word w in a
document d is related to some topic ¢t € T, and the actual word depends only on
the corresponding topic instance and not on the document itself or other words.
Formally, we assume that the probability that a word w occurs in document d
can be decomposed as

plw|d) =3 plw | Op(t | d) = 3 Gutbra,

teT teT

where ¢,,; = p(w | t) is the distribution of words in a topic and 6y = p(t | d)
is the distribution of topics in a document. The problem of training a topic
model on a collection of documents is, thus, the problem of finding the set of
latent topics T, i.e., the set of multinomial distributions ¢, t € T, and the



set of multinomial distributions 6;4, d € D, which we represent by the matrices
D = (Gwit)wt and O = (0iq)tq Tespectively.

There are two main approaches to solving this problem, i.e., reconstructing
@ and O. In the first approach, the total log-likelihood

L(®,0) = Z Z Nuwd mZ Guibrg — max

deD wed teT

is maximized with an expectation-maximization (EM) algorithm under con-
straints 0;q > 0, ¢t > 0, ZteT 0iqg=1,d € D, and Zwew Gt =1, t €T Ny
denotes the number of times word w occurs in document d. This setting is the
probabilistic latent semantic analysis (pLSA) model [13].

These ideas were further developed in the already classical latent Dirichlet
allocation (LDA) model [4]. LDA is a Bayesian version of pLSA: it assumes that
multinomial distributions 6;4 and ¢,,; are generated from prior Dirichlet distri-
butions, one with parameter « (for the 6 distributions) and one with parameter
B (for the ¢ distributions). LDA inference can be done either with variational
approximations or with Gibbs sampling, first proposed for LDA in [11]. Here
the hidden variables z; for every word occurrence are considered explicitly, and
the inference algorithm produces estimates of model parameters as Monte Carlo
estimates based on samples drawn for the latent variables. Gibbs sampling is a
special case of Markov chain Monte Carlo methods where sampling is done coor-
dinatewise, hidden variable by hidden variable. In the basic LDA model, Gibbs
sampling with symmetric Dirichlet priors reduces to the so-called collapsed Gibbs
sampling, where 6 and ¢ variables are integrated out, and z; are iteratively re-
sampled according to the following distribution: p(z; =t | z—;, w, a, B) x

(20t z_iyw, 0, B) = —Pitd T2 n—iwt + 8
iy Uy #—g, W, &4y Zt’ET (n—i,t’d —+ a) Zw/EW (n—i,w’t +IB)’

where n_;1q is the number of words in document d chosen with topic ¢ and
Nn_; wt 1S the number of times word w has been generated from topic ¢ except
the current occurrence z;; both counters depend on the other variables z_,,.

Samples are then used to estimate model variables: 6;4 = %7 Gt =
Zt’ET(n—i,t’d+a)

n—i,tw B ) where ¢,,; denotes the probability to draw word w in topic ¢

Zw,GW(n—i,ullt+ﬁ
and 604 is the probability to draw topic ¢ for a word in document d.

After it was introduced in [4], the basic LDA model has been subject to many
extensions, each presenting either a variational or a Gibbs sampling algorithm
for a model that builds upon LDA to incorporate some additional information
or additional presumed dependencies. One large class of extensions deals with
imposing new structure on the set of topics that are independent and uncor-
related in the base LDA model, including correlated topic models (CTM) [3],
Markov topic models [17], syntactic topic models [7] and others. The other class
of extensions takes into account additional information that may be available
together with the documents and may reveal additional insights into the topical
structure; this class includes models that account for timestamps of document




creation [27,28], semi-supervised LDA that centers on specific topics [22], Dis-
cL DA that uses document labels to solve a classification problem [15], and others.
Finally, a lot of work has been done on nonparametric LDA variants based on
Dirichlet processes, where the number of topics is also sampled automatically in
the generative process; see [10] and references therein.

Additive Regularization of Topic Models (ARTM) [25,26] is a recently devel-
oped novel approach to topic models that avoids complications of LDA infer-
ence (it is no easy matter to develop a new LDA extension) while preserving the
capabilities for extending and improving LDA. ARTM has several conceptual
differences from the Bayesian approach [25]: in ARTM, regularizers are explicit,
adding new regularizers is relatively easy, and inference is done via the regular-
ized EM algorithm. We add regularizers R(®,0) = ) . 7;R;(P, 0) to the basic
pLSA model, where R;(®, ©) is some regularizer with nonnegative regularization
coefficient 7;. Then the optimization problem is to maximize L(®, ©)+ R(P, ©),
where L(®,0) is the likelihood, and the regularized EM algorithm amounts to
iterative recomputation of the model parameters as follows:

OR

Puwtbid ( ) ( OR )
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In this work, we use ARTM models with standard sparsity regularizers added to
the & and © matrices.

DPdtw =

3 Regularization in topic models

Whatever the inference method, the basic topic modeling problem is equivalent
to stochastic matrix decomposition, where a large sparse matrix F' = (Fg,) of
size |D| x |W/| that shows how words w € W occur in documentsd € D is ap-
proximated by a product of two smaller matrices, © of size |D| x |T'| and & of
size |T'| x |W|. Note that almost by definition, the solution of this problem is not
unique: if F''= O is a solution of this problem then F' = (6.5)(S~1®) is also a
solution for any nondegenerate |T'| x |T'| matrix S (for a simple example, note
that we can permute topics freely, and nothing changes). In terms of the infer-
ence problem, this multitude of solutions means that an inference algorithm will
converge to different solutions given different random factors in the algorithms
and different starting points. In practice, by running the same algorithm on the
same dataset we will get very different matrices @ and ©, which is obviously an
undesirable property for applications.

In optimization theory, problems with non-unique and/or unstable solutions
are called ill-posed, and a general approach to solving these problems is given
by Tikhonov regularization [24]. In terms of the model definition, regularization
can be viewed as extending the prior information which lets one reduce the set
of solutions. Regularization is done either by introducing constraints on ¢ and
© matrices [20] or by modifying the sampling procedure [1].

In what follows, we give examples of regularizers from prior art that are
relevant to the regularizer we propose in this work. First, the work [20] proposes



to introduce a regularization procedure that uses external information on the
relations between words. This information, possibly from an external dataset, is
expressed as a |W|x |W| covariance matrix C; formally, this adds the prior p(¢; |
C) x (¢ C¢;)" for some regularization parameter v, the total log posterior looks
like

144
L= Nilogoi +vlogep/ Coy,
i=1
and the ¢ matrix is now updated as

20 P Zzl Ciwit
¢ Cy

Another regularizer proposed in [20] is based on the idea that ¢,; depends
on some matrix C' which, in turn, expresses the dependencies between pairs of
unique words. In other words, now a topic is defined as a collection of related
words with probability distribution v;, but the probability distribution of their
occurrences is ¢; o< Cpe. The total log posterior is now

(bwt X ( wt )

Nt+2V

w w w
L= Z Nit logz Cijbje + Z(’Y —1)log ;s
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under the constraints that Zjvil 1j: = 1. One can update the ¥ matrix similar
to the updates of @ and © matrices:

w

NitCiny
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However, in both cases one has to know the C' matrix in advance; C'is a very
large matrix that should incorporate prior knowledge about every pair of words
in the dataset, which represents a major obstacle to using these regularizers.

Another direction of LDA extensions that has been intended, at least in part,
to improve the stability of topic solutions, is the direction of semi-supervised
LDA (SLDA) and related extensions. Semi-supervised LDA is based on a special
kind of regularizer; the idea is that in real life applications, especially in social
science, it often happens that the entire text corpus deals with a large number
of different unrelated topics while the researcher is actually interested only in a
small subset of them. In this case, it is desirable to single out topics related to
the subjects in question a make them more stable. If the subject are given as a
set of seed words, the semi-supervised LDA model simply fixes the values of z
for certain key words related to the topics in question; similar approaches have
been considered in [1,2]. For words w € Wy, from a predefined set Wy, the
values of z are known and remain fixed to z, throughout the Gibbs sampling
process:

[t = éw], w e Wsup,
q(zw, t,z_w, w,a, ) otherwise.

P(zw =t | 2w, w,a, ) {



Otherwise, the Gibbs sampler works as in the basic LDA model; this yields an
efficient inference algorithm that does not incur additional computational costs.

In a straightforward extension, interval semi-supervised LDA (ISLDA), each
key word w € Wy,p is mapped to an interval of topics 2}, 2], and the probabil-
ity distribution is restricted to that interval. In the Gibbs sampling algorithm, we
simply set the probabilities of all topics outside [z}*, 2] to zero and renormalize
the distribution inside:

w

Zp (2w, t,Z2—w w,a,B)
I (2) ;W€ Wep,

2l EZ}USVSZ;” Q(Zwﬂf';sza'wva;ﬁ)

(2w =t | 2w, w,a, f) ,
(2w, t, 2w, w, a, ) otherwise,

where I 5, denotes the indicator function: I ( ) = 1iff z € [z}, 2]. Interval
semi- superv1sed LDA has been used in case studles related to social sciences
in [5,22]; these works show that SLDA and ISLDA not only mine more relevant
topics than regular LDA but also improve their stability, providing consistent
results in the supervised subset of topics. In this work, we present a new LDA
extension which provides even more stable results at no loss to their quality.

4 Granulated LDA

In this work, we introduce the granulated sampling approach which is based on
two ideas. First, we recognize that there may be a dependency between a pair
of unique words, but, unlike the convolved Dirichlet regularizer model, we do
not express it as a predefined matrix. Rather, we assume that a topic consists
of words that also often occur together; that is, we assume that words that are
characteristic for the same topic are often colocated inside some relatively small
window. The idea is to capture the intuition that words that are located close
to each other in the document usually relate to the same topic; i.e., topics in a
document are not distributed as independently sampled random variables but
rather as relatively large contiguous streaks, or granulas, of words belonging to
the same topic. Figure 1 illustrates the basic idea, showing a granulated surface
as it is usually understood in physics (bottom right) and a sample partially
granulated text that might result from the granulated LDA model (on the left).

Interesingly, the rather natural idea of granulas has not really been explored
in topic models. The only similar approach known to us in prior work deals
with using the additional information available in the text in the form of sen-
tences and/or paragraphs. The work [9] adds a sentence layer to the basic LDA
model; in sentence-layered LDA, each sentence is governed by its own topic dis-
tribution. Sentence and paragraph boundaries are also often used in LDA exten-
sions dealing with sentiment analysis: it is often assumed that a single sentence
or paragraph deals with only one aspect; see, e.g., the Aspect and Sentiment
Unification Model (ASUM) [29] that extends the basic Sentence LDA (SLDA)
model However, we are not aware of topic models that would use naturally aris-
ing granulas of fixed or variable size and assume that a granula is covered by
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Fig. 1: Illustration for granulated LDA: granulated surface and granulated text.

the same topic. One could say that GLDA is in essence equivalent to a cer-
tain cooccurrence-based regularizer, but without the need to compute the entire
cooccurrence matrix, everything is local.

Granulated Gibbs sampling is implemented as follows: we randomly sample
anchor words in the document, sample their topics, but then set the topic of
all words in a local context window with the use of the anchor word’s sampling
result. We sample as many anchor words as there are words in the document.

On the other hand, the topical distribution of words inside a window (gran-
ula) can have its own distribution, different from the distribution imposed by
Dirichlet priors. By modifying the distribution function inside a window (local
density) and changing the window size, we can influence the model’s regulariza-
tion. Thus, we regularize the topic model as follows: having sampled an anchor
word z; = z in the middle of a window, we then set the topics of nearby words z;,

i —j| <1, as z; = zK (@) for some kernel function K. The kernel function

should satisfy K(0) = 1 and be monotone nonincreasing towards the ends of
the window, modifying the distribution of topics inside a local window. We have
compared three different kernels:

(1) step kernel K(r) = 1, when all topics in the window are set to z;
(2) Epanechnikov kernel K (r) =1 — r?;
(3) triangular Epanechnikov kernel K(r) =1 — |r|.

Thus, formally speaking, after the initialization of © and @ matrices as in
regular Gibbs sampling, we run the following algorithm:

— for every document d € D, repeat |d| times:
e sample a word instance j € d uniformly at random;
e sample its topic z; = z as in Gibbs sampling;

o set z; = 2K <@) for all ¢ such that |i — j| <.



On the final inference stage, after sampling is over, we compute the ¢ and ©
matrices as usual (see Section 2).

Note that unlike regular Gibbs sampling, we do not go over all words in the
document but randomly sample anchor words. As a result of this process, words
that are often found close together in different documents (inside a given window
size) will be more likely to fall in the same topic.

5 Evaluation

In our experiments, we have used a dataset of 101481 blog posts from the
LiveJournal blog platform with 172939 unique words in total; LiveJournal is
a platform of choice for topic modeling experiments since the posts are both
user-generated and much longer than a typical tweet or facebook post. We have
trained six baseline models and several varieties of GLDA:

(1) the basic probabilistic latent semantic analysis model (pLSA);

(2) ARTM model with & sparsity regularizer;

(3) ARTM model with © sparsity regularizer;

(4) basic LDA model with inference based on Gibbs sampling [11];

(5) basic LDA model with inference based on the variational Bayes [4];

(6) supervised LDA model with a vocabulary consisting of ethnonyms; this vo-
cabulary was developed in a previous case study of user-generated content
designed to study ethnic-related topics [5,14,22];

(7) granulated LDA with three different windows: step, Epanechnikov, and tri-
angular, and different window sizes, from [ =1 to [ = 3;

In all cases, we have trained the models with T' = 200 topics. Note that we
train LDA with two different inference algorithms since they may have different
stability properties. For SLDA, GLDA, and LDA with inference based on Gibbs
sampling, we have set the Dirichlet prior parameters to be a = 0.1 and 8 = 0.5,
values that have been previously tuned for our datasets [14]. Regularization
coefficients for the ARTM models were tuned to give the best possible topics.

In the experiments, we mostly strived for topic stability but we cannot afford
to achieve stability at a significant loss of topic quality: useful topics have to be
readily interpretable. For evaluation, we use the coherence and tf-idf coherence
metrics. Coherence has been proposed as a topic quality metric in [8,19]. For a
topic ¢ characterized by its set of top words Wy, coherence is defined as c(t, Wy) =
> oy waew, 108 %, where d(w;) is the number of documents that contain
w;, d(w;, w;) is the number of documents where w; and w; cooccur, and € is a
smoothing count usually set to either 1 or 0.01. A recent work [22] proposed a
modification of the coherence metric called tf-idf coherence:

> dewy wpea tHAE (w1, d)tHidE (w2, d) + €

i t7W = 1 i ’
cotiat(t, We) Z 0g Zd:wledtf'ldf(wl’d)

w1, w2 €Wy

where the tf-idf metric is computed with augmented frequency,



Topic model Topic quality metrics |Topic stability metrics
coherence tf-idf coherence|stable topics Jaccard
pLSA -238.522 -126.934 54 0.47
pLSA + & sparsity reg. -231.639 -127.018 9 0.44
PLSA + O sparsity reg. -241.221 -125.979 87 0.47
LDA, Gibbs sampling -208.548 -116.821 s 0.56
LDA, variational Bayes -275.898 -112.544 111 0.53
SLDA -208.508 -120.702 84 0.62
GLDA, step window, [ =1 -180.248 -123.231 195 0.64
GLDA, step window, | = 2 -171.038 -122.029 195 0.71
GLDA, step window, | = 3 -164.573 -121.582 197 0.73
GLDA, Epanechnikov window, | = 1| -226.394 -148.725 184 0.23
GLDA, Epanechnikov window, | = 2| -227.099 -174.475 192 0.33
GLDA, Epanechnikov window, | = 3| -206.347 -171.155 199 0.20
GLDA, triangular window, | = 1 -226.486 -148.147 162 0.16
GLDA, triangular window, | = 2 -234.096 -186.294 200 0.30
GLDA, triangular window, | = 3 -222.487 -184.187 200 0.68

Table 1: Overall metrics of topic quality and stability for granulated LDA and
other models averaged over all runs of the corresponding model.

1 d D
tE-idf (w, d) = tf(w, d) xidf(w) = (2 n maxj(;:’}()w, d)> log 72 D' : |w i

where f(w,d) is the number of occurrences of term w in document d. This skews
the metric towards topics with high tf-idf scores in top words, since the numer-
ator of the coherence fraction has quadratic dependence on the tf-idf scores and
the denominator only linear. We have used both coherence and tf-idf coherence
to evaluate topic quality in our solutions.

To evaluate topic stability, we have used the following approach. First, we
introduce two natural similarity metrics for two topics [14]: symmetric Kullback—
Leibler divergence between the probability distributions of two topics in a solu-

tion, defined as KL(¢!, ¢?) = 3> o2 log i—; + 13, 92 log ﬁ, together with

: . . _ KL(t1,t2) :
its normalized version [14] NKLS(¢1,t2) = 1— m, and Jaccard sim-
ilarity of two sets of top words in two topics: for a given threshold 7', we denote
by Topg the set of T' words with largest probabilities in a topic distribution ¢

and compute JT (¢y, ¢s)

normalized Kullback-Leibler similarity is larger than 0.9 (a threshold chosen by
hand so that the topics actually are similar), and we call a topic stable if there
is a set of pairwise matching topics in every result across all runs [14].

Table 1 shows the results of our experimental evaluation, comparing the basic
topic quality and topic stability metrics across several baseline topic models and
granulated LDA with different window sizes. We have trained 200 topics for every
model, averaging results over three runs. We see that granulated LDA with
the step window produces topics that have quality matching that of baseline
topic models or even exceeding it, but the other two windows, Epanechnikov
and triangular, do not work nearly as well. One should be careful about using
coherence to draw steadfast conclusions in this case, though, because granulated
LDA naturally lends itself to optimizing coherence: it artificially sets words that

|Top3;1 ﬂTopZ;l |

= FRopT, UTopT. | We call two topics matching if their
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Fig. 2: Sorted topic quality metrics: coherence (top), tf-idf coherence (bottom).

cooccur in the same document (even in the same window) to the same topic.
This effect is much less prominent for tf-idf coherence (many words in a window
are likely to be common words with low tf-idf weights), and in tf-idf coherence
we see GLDA with step window performing on par with other models. Figure 2
shows the distributions of coherence and tf-idf coherence metrics in more detail;
namely, it shows the coherences (top) and tf-idf coherences (bottom) of all 200
topics for all models sorted in decreasing order, so a line higher on this plot
means a better overall model. We can see that GLDA solutions, especially with
the step window, hold up quite well compared with other models in our study.

The primary gains of our new model lie in topic stability. Table 1 shows the
number of stable topics for every model and average Jaccard similarity (w.r.t. to
100 top words in each topic) between pairs of matching topics. We see that gran-
ulated LDA indeed produces very stable results: in all runs of granulated LDA
with all window variants almost all topic were stable, and the average Jaccard
similarity between them is also much higher than in other models in the case
of a step window. Overall, we conclude that GLDA with step window produces
much more stable topics at virtually no loss to quality and interpretability.



6 Conclusion

In this work, we have introduced a novel modification of the latent Dirichlet
allocation model, granulated LDA, that samples whole windows of neighboring
words in a document at once. This model was intended to improve the stability
of the topic model results, and in the experimental evaluation we have shown
that the results of GLDA are indeed much more stable while preserving the same
overall topic quality. This improvement is especially important for web science
and digital humanities that seek not only interpretable topics, but essentially
entire solutions that could serve as a basis to make reliable conclusions about
the topical structure of text collections. In further work, we plan to extend and
improve upon the basic idea of granulated LDA, experimenting with variations
of this model. We hope that designing topic models with an eye to topic stability
will prove to be a promising new venue of research.
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