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Abstract

Our model is a Dixit-Stiglitz type, but for general, unspecified preferences. We also relax conditions tradition-
ally responsible for profit concavity or quasi-concavity. Therefore, equilibria can appear asymmetric, set-valued.
We find “weakest” conditions when equilibria exist. In comparative statics, we guarantee emergence of asym-
metric equilibria (in finite number of moments) during population growth—if and only if the demand generates
non-monotone marginal revenue. At such points firms ambiguously split into small producers and big producers.
In spite of related catastrophic jumps in consumption, price, and mass of firms—the direction of changes is
determined unambiguously.
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1 Introduction

Our motivation for studying non-concave producers’ profit function includes: (a) extending general market theory
to new situations; (b) finding new market effects.

So far, in modelling any markets, global profit concavity remains a widespread technical assumption, though it
lacks clear empirical support or intuitive motivation. For instance, when the demand curve results from combining
the curves of two distinct consumer groups having a “chock-price”, our profit appears non-concave. We would like to
model such natural situations, that means dropping the traditional concavity assumption. Can we really drop it and
thus expand the applicability of monopolistic competition concept? Would our usual conclusions about equilibria
existence, uniqueness and comparative statics remain true? This paper answers to all the questions more or less
positively but changes the equilibrium concept.

To outline the theoretical context, we should recall that monopolistic competition model has become by now the
main work-horse of international trade, economic geography, growth theory, and other fields, gradually replacing
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the concepts of perfect competition and oligopoly. Its essence is the assumption that a firm or brand-owner
behaves as a price-maker but free entry drives all profits to zero. In the presence of increasing returns to scale and
consumers’ love for variety (incomplete substitution), such market does not degenerate into perfect competition
or natural monopoly. This idea became really productive after its formalization by Dixit and Stiglitz (1977).
Later on, too peculiar effects of specific CES functional form of utility and related criticism drived the theorists
to other tractable specifications: quadratic (Ottaviano et al., 2002) and exponential (Behrens and Murata, 2007).
At some stage, this tendency for generalizaion revitalized the initial Dixit, Stiglitz and Krugman’s (1979) approach
of studying monopolistic competition in quite general unspecified form. Several researchers were thinking about
such generalization independently, that resulted in subsequent working papers and articles: Bertoletti et al. (2008),
Zhelobodko et al. (2010), Dhingra and Morrow (2011), Mrazova and Neary (2012)—achieving various findings in
comparative statics.1 To continue this line of generalizations, the present paper makes one more step in expanding
the range of markets suitable for monopolistic competition modelling. Namely, we extend recent Zhelobodko et al.
(2012, called further ZKPT) in the direction of non-concave profit. This case was never studied under monopolistc
competition, up to our knowledge. Can there arise multiple or/and asymmetric equilibria? How can they change
when market increases?

These questions looking technical, still worth clarification: first, to make all theoretical predictions robust against
any changes in utilities; second, to uncover new effects possible. To argue that non-concave profit function is not
something too peculiar and unrealistic, we repeat that it always arise when the demand curve is piece-wise smooth,
including typical and realistic combinations of (linear or non-linear) demand curves having a chock-price. Such
aggregate demand curve has a kink, that makes the marginal revenue non-monotone, which imples non-concave
profit. One should not think that such non-monotonicity can be cured by small demand variations smoothening
such kinks. No, non-monotonicity remains for all smooth approximations of a kinked demand, and the family of
non-monotone marginal revenues is generic, as well as monotone family.

Thus, we cannot see any reasons to exclude non-monotone marginal revenue in reality and therefore to exclude
it from theory. One more reason for considering non-concave profit arise from the supply side. Indeed, in settings
with endogenous R&D (Vives, 2008) profits are often non-convex, because small R&D brings small effect, then
higher one. (Yet, in this publication we confine ourselves to simple linear cost, hoping that the same equilibrum
concept will be used later in richer settings with R&D.) These considerations make us believe that non-concave
profit functions were avoided in theory only for technical hardships—hardships to be overcome now.

Our setting repeats Zhelobodko et al. (2012), called further ZKPT, but without profit concavity and without
non-linear costs. Namely, we study a closed economy with one diversified sector, one homogenous production
factor—labor, homogeneous monopolistically-competitive firms. The representative consumer’s elementary utility
is unspecified, satisfuing weak natural restrictions, and gross utility is the sum of elementary utilities.

Among results characterizing such equilibria, Theorem 1 finds the weakest conditions when monopolistically-
competitive equilibria do exist. Existence is guaranteed mainly by a natural boundary condition on elementary
utility u(x): function R(x) ≡ xu′(x) called “elementary revenue” must become zero at the origin (that exclude
utilities like u(x) = ln(x)), and sufficiently decrease at infinity (that exclude utilities like u(x) = ln(x + a)). Thus
we define utilities suitable for monopolistic competition modelling. This is a very broad class. Theorists may feel
happy with such a modest assumption, instead of several doubtful and unnecessary restrictions imposed in typical
papers. However, the equilibria studied can be set-valued and asymmetric. Asymmetry means coexistence of two
or more kinds of equally-profitable behavior of firms: those with big outputs and ones with small outputs. The
masses of both types remain ambiguous, up to their weighed sum, satisfying the labor market clearing. Such set-
valued asymmetric equilibrium is the main conceptual achievement of this paper. To analyse such equilibria, we
use “ordinal” technique of comparative statics from Milgrom and Shannon (1994), the technique being applied to

1The first draft of this paper is Alexey Gorn’s diploma (2009) at Novosibirsk State University completed under S.Kokovin’s super-
vision.
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monopolistic competition in the manner like in Mrazova and Neary (2011).
Further, for achieving more definite equilibrium structure, we impose a “regularity” restriction on our elementary

utility u(x): there must be a finite number of “kinks” in the elementary inverse demand u′(x) and they must be
non-degenerate. A “kink” is an interval where the “elementary marginal revenue” R′(x) ≡ u′(x) + xu′′(x) is not
(strictly) decreasing. “Non-degenerate” means, that under the regularity assumption there cannot be more than
two kinds of equally-profitable coexisting behavior of firms: big outputs and small outputs.

Using the regularity assumption, Theorem 2 states the structure of a set-valued equilibrium. We show that the
equilibrium value of the “intensity of competition” (marginal utility of income) is always unique. However, there
can be multiple equilibrium outputs/prices, nemely, a couple of possible outputs and a couple of prices, then all
possible masses of firms constitute an interval. Thereby we show that equilibria multiplicity and asymmetry always
arise together.

Further, we turn to comparative statics w.r.t. the market size. We consider “complete path” of evolution, when
the economy population continuously grows from zero to infinity (or, equivalently, the evolution can result from
a monotone decrease in costs, because only relative market size matters). Theorem 3 shows that if and only if
utility u(x) generates non-monotone elementary marginal revenue R′, the multiple-asymmetric equilibria do arise
at some moment during the market growth. Somewhat non-trivial here is the idea, that monotonic decrease in R′
“everywhere” is equivalent to “profit concavity in all possible market situations” and simultaneously equivalent to
profit quasi-concavity (by contrast, in a given situation, quasi-concavity is a weaker assumption). Rather surprizing
for us also became the necessity side of Theorem 3: that equilibria multiplicity must arise under non-monotone
marginal revenue (non-concave profit) during market evolution, though such multiplicities are rather degenerate
situatons—points on the path of growth (as numerous as the number of demand kinks). The explanation lies in
continuity of such comparative statics.

Intuitively, that such market evolution works through the entry of new competitors and resulting gradually
growing “intensity of competition.” Geometricaly, this affects a firm as if the marginal-cost horizontal line were
gradually rising from zero to infinity against the immobile marginal revenue curve R′, and the intersections determine
the locally-optimal outputs. When R′ is non-monotone, it must be that at some moment rising marginal cost hits
this interval of non-monotonicity, and then sooner or later equalizes two local maxima of profit. Here the firms must
split into asymmetric groups. And indeed, we give such numerical examples: multiplicity/asymmetry situations
really do arise under some reasonable utilties.

Importantly, comparing situations before and after this split of firms into groups, we see that outputs and prices
make a finitely-big jump in response to infinitely-small increase in the market size. In our numerical example, the
mass of firms (varieties) suddenly jumped up as much as 10 times and the price doubled! We call such abrupt
changes catastrophic, regardless, are they good or bad for consumers (actually, the jumps are good under expanding
market, bad under shrinking market). Moreover, at the moment of ambiguity, i.e., during the catastroph, all
admissible equilibria are non-equivalent for consumers’ welfare.

Studying in more detail the growing market, Theorem 4 establishes the direction of changes in prices/outputs.
Relying on the “ordinal” technique developed by Milgrom and coauthors, we extend the comparative statics conclu-
sions from ZKPT onto set-valued equilibria (the extension amounts to studying the jumps because in single-valued
points ZKPT applies directly). Namely, we find that under growing market the mass of firms anyway goes up, with
or without jumps, and the individual consumption of each variety always goes down. As to prices, they jump up
during a catastroph, that looks paradoxical under increasing competition of firms. Explaining similar paradox in
smooth comparative statics, ZKPT exploits the Arrow-Pratt measure −xu′′(x)/u′(x) of concavity, called “relative
love for variety” (RLV) or elasticity of the inverse demand. According to ZKPT, decreasingly-elastic demands,
called super-convex (Mrazova and Neary, 2011), necessarily make the prices go up together with the population and
mass of firms. The same idea applied in this paper means, that the demand curve at the zone of any kink appears
too much convex. That’s why the upward jump of the equilibrium mass of firms should bring an increase in prices
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instead of decrease, that seemed natural. As in ZKPT, under market growth, firm’s output and price both follow
the distinction governed by RLV. Namely, most realistic sub-convex demands—show price-decreasing competition
with increasing outputs, whereas super-convex demands display the opposite pattern, CES utility being the neutral
borderline.2

As theorists, we are satisfied that all general market regularities, found in ZKPT only under global profit
concavity and unique symmetric equilibrium, are now extended to set-valed equilibria and more general situation.
Can a practical economists also learn something from our findings? It depends upon realism of our new effect
found: a possibility and even substantial probability of “market jumps”. They can be supposed unrealistiс only if
one provide an empirical evidence that non-monotone marginal revenue (very convex interval of the demand curve)
is excluded in reality. The essence of our warning is that small causes can bring big market consequences, i.e., abrupt
changes in the path of market development. One can object that formally jumps do depend on our assumption of
homogenous firms but firms’ heterogeneity should only smoothen this effect.

The next section introduces the model, developing all the notions of “set-valued equilibria”. Section 3 displays
existence of multipe and asymmetric equilibria, Section 4 presents comparative statics of set-valued equilibria.

2 Model and examples
We study one-sector closed economy with monopolistic competition a’la Dixit-Stiglitz but with general (unspecified)
utility function. In doing so, we follow ZKPT but impose less restrictions.

Our economy involves one production factor—labor. One differentiated good is split into continuum [0, n]
of firms/varieties with same index i ∈ [0, n] because each variety is produced by one single-product firm (n is
endogenous).

Demand. Labor is chosen as the numéraire. There are L identical consumers who supply each one unit of labor
inelastically, so that 1 is both a worker’s income and expenditure. Every consumer chooses an infinite-dimensional
consumption vector x = xi≤n (a measurable consumption function) to maximize her utility subject to the budget
constraint:3

max
x(.)
U ≡

ˆ n

0

u(xi)di s.t.
ˆ n

0

pixidi = 1. (1)

Here we use infinite-dimensional price vector p : [0, n]→ R+, where pi ≡ p(i) is the price of i-th variety; xi ≡ x(i)
denotes i-th consumption. One of our goals is to formulate the weakest restriction on utilities suitable for possibility
of monopolistic competition in the market, as follows.

Assumption 1 (non-Inada conditions). Elementary utility function u(·) : R+ 7→ R+ is thrice continuously
differentiable and strictly concave on (0,∞), increasing on some non-empty interval [0, xmax), where xmax ≤ ∞
denotes (finite or infinite) argmaximum of function Ru(x) ≡ xu′(x), called “elementary revenue”. At the origin,
utility u(·) is normalized as u(0) = 0, and generates increasing strictly concave bounded revenue Ru(0), in the sense

lim
x→+0

Ru(x) = 0, MR ≡ lim
x→+0

R′u(x) > 0, lim
x→+0

R′′u(x) < 0. (2)

At the elementary revenue’s argmaximum point xmax, we require concavity: limx→xmax
R′′u(x) < 0 and condition:

either MR ≡ lim
x→xmax

R′u(x) = 0 or lim
c→+u′

min

max
x

[Ru(x)− cx] =∞. (3)

2As to welfare, normally in our examples welfare goes up: increasing variety outweigh increasing prices. However, we know some
paradoxical counter-examples.

3Profits are not included into income, because they vanish under free entry.
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We call all such utilities suitable for monopolistic competition modelling (MC-suitable) and maintain this assumption
throughout.4

Strict concavity of u implies that gross utility U displays some “love for variety”, because, as in risk-taking theory,
strictly concave elementary utility entails strictly convex preferences. Thereby under uniform prices across varieties,
the consumer strictly prefers buying a mixture of varieties rather than any single variety. Like in risk-taking, to
express this preference for mixture, we can exploit Arrow-Pratt measure ru of concavity for any function u:

ru(xi) ≡ −
xiu
′′(xi)

u′(xi)
> 0. (4)

Applied to utility, ru in ZKPT is called relative love for variety (hereafter, RLV). Using the standard definition
of the elasticity of substitution σ, it is easy to show that at a symmetric consumption pattern the RLV is the
inverse of the elasticity of substitution across varieties σ(x), i.e., ru(z) = 1/σ(z). Importantly for price-making, at
any xi the demand elasticity is also equal to σ(xi). (In particular, CES utility u(xi) = xρi implies constant RLV
ru = 1− ρ ≡ 1

σ ; 0 < ρ < 1).
Further, using FOC of consumers’ optimization and denoting the Lagrange multiplier as λ, we obtain the inverse

demand function p∗:
p∗(xi, λ) = u′(xi)/λ. (5)

Thus, marginal utility of income λ makes each demand shrinking, and therefore measures the intensity of competi-
tion.

Supply. We assume identical firms: to produce output qi = Lxi each firm i must spend cqi + f units of labor,
where c is the marginal cost and f is the fixed cost of business. Taking as given the inverse demand function
p∗(xi, λ) for i-th variety and given λ, i-th firm maximize its per-consumer operational profit π w.r.t. quantity:5

π(xi, λ, c) ≡ (
u′(xi)
λ
− c)xi → max

xi∈R+
. (6)

We see that current marginal utility of money λ becomes the single market statistic expressing intensity of
competition, like price index under CES modelling.

Now we can introduce notations for the maximal value π∗u of the per-consumer profit function, for the set X∗u of
profit-maximizers, and formulate the “firm’s survival” or free-entry condition:

π∗u(λ, c) ≡ max
xi∈R+

π(xi, λ, c), X∗u(λ, c) ≡ arg max
xi∈R+

π(xi, λ, c). (7)

f ≤ Lπ∗u(λ, c). (8)
4Assumption 1 rules out some neoclassical utilities like log(x)± bx or −1/x. The assumption is not technical: the functions excluded

really do not suit any monopolistic competition model, because related profit may remain positive and increasing at x→ 0, or increases
at infinite x. But, unlike restrictive Inada conditions, our formulation allows for all utilities useful in monopolistic competition models:
quadratic utilties u = ax− bx2 that have a satiation point x̌0 = 0.5a/b and chock-price u′(0) <∞, CES utilties u(x) = xρ : ρ < 1 that
have infinite derivative at 0, AHARA utilties u(x) = (a+x)ρ−aρ±bx that may have positive limiting derivative u′min ≡ limx→∞ u′(x) =
b > 0, and many others.

5

Standardly, profit maximization w.r.t. price gives an equivalent result. Also, equivalent is maximization of gross profit
Lπ(qi/L, λ, c)− f w.r.t. output qi.
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Note that both mappings π∗u and X∗u do not have index i because the optimization program is the same across
firms, so both mappings are just characteristics of function u. Still, the program above allows for asymmetry
among firms’ decisions xi when X∗u is not a singleton. Such possibe assymetry is the essence of our paper. To
explain it, we recall usual FOC for maximizing profit π(x, λ, c) formulated as equality between marginal cost and
marginal revenue mR:

mR(xi, λ) ≡ xiu
′′(xi) + u′(xi)

λ
= c. (9)

As to SOC, the second derivative of profit (6) being the first derivative of marginal revenue (9), it standardly
follows that profit is strictly concave at x if and only if the elementary marginal revenuemR(x, 1) is strictly decreasing
at x. In particular, when u′′′ exists, such restriction on utility in terms of concavity of u′ looks like (see ZKPT):

ru′(x) ≡ −xu
′′′(x)

u′′(x)
< 2. (10)

In ZKPT this requirement is imposed globally (∀x > 0), being a condition for unique symmetric equilibrium, but
our goal here is the opposite and we do not require it (it naturally holds locally at local optima).

Now we are ready to construct a complicated notion of set-valued equilibria. But to motivate it, we first present
an example illustrating everything throughout. In some sense, it immediately presents all main ideas of our paper.

(Guiding) example 1. To illustrate our reasoning, we use throughout the utility

u(x) = x+
√
x+ 1.4 arctan(2x+ 0.05)− 1.4 arctan(0.05). (11)

Algebraically, this function u looks rather exotic, but nevertheless it satisfies Assumption 1, i.e., it is increasing at
0, strictly concave, smooth, etc. The only specific feature differing from textbook examples like CES or quadratic
functions, is that related marginal revenue becomes non-monotone and thereby related profit is non-concave. Specif-
ically, in Fig.1, we take parameters L/f ≈ 10.04, λc ≈ 0.00038 suitable for two global argmaxima of profit (see Section
4 for numerical details). One can see that the producer’s operational profit xi(p∗(xi, λ) − c) is not locally strictly
concave only at those points where the normalized marginal revenue MR(x) ≡ [xip∗(xi, 1)]′ = u′(xi) + xiu

′′(xi) is
increasing: approximately from 0.9 to 4.8.

Here, as usual, the marginal revenue MR intersects the normalized marginal cost MC = λc at points where
the profit function could reach local maxima or minima. The middle intersection, approximately x ≈ 2.5, is
the local minimum. For us important are only the leftmost and the rightmost intersections – local argmaxima
x̂(λc) ≈ 0.65 < x̌(λc) ≈ 12.9. More generally, under K intersections, local maxima must be among the odd roots of
FOC equation (9), which can be reformulated as:

(u′′(x) + xu′(x)− λc) = 0.

Under some value λc, like in this picture, two or more local maxima become global, bringing the same profit.
Then each producer becomes indifferent which optimal quantity to produce: x̂ or x̌.

In the case of such ambiguity, we denote by n̂ the unknown mass of firms who chose the left optimum x̂ (small
output), and by ň the mass of firms choosing the bigger output x̌. Using these notations, we express the total costs
of both firm types as (cx̂L+ f), (cx̌L+ f), and formulate the labor balance (labor market clearing condition):

(cx̂L+ f)n̂+ (cx̌L+ f)ň = L. (12)
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Figure 1: Non-monotone marginal revenue and two peaks of profit under utility u(x) = x +
√
x + 1.4 arctan(2x +

0.05)− 1.4 arctan(0.05).

To define a certain kind of market equilibrium, this balance equation should be combined with free entry, consumers’
and producers’ FOC. Luckily, the equilibrium equations are not simultaneous. One can first find the equilibrium
value of marginal utility of income λ from inequality (7) turning into the free-entry equation:

π∗u(λ, c) = f/L. (13)

Then, having λ, we find equilibrium consumptions (x̂, x̌) from (9), then both prices are determined from (5). Finally,
we seek for the masses of groups of firms ň and n̂ from the labor balance (12). Here some difficulty arise: finding two
variables from one equation is impossible. Thereby some indeterminacy always remains in the firms’ masses (n̂, ň).
In other words, there exists the whole interval of possible couples (n̂, ň) that satisfy all equilibrium conditions,
ambiguity cannot be excluded. Thereby, instead of a single equilibrium arising under strictly concave profit, in any
situation with two argmaxima x̂ < x̌, we get a continuous set of equilibria: any couple n̂, ň satisfying the labor
balance (and therefore the consumers’ budget constraint) satisfies the idea of asymmetric equilibrium. Thus, we see
that identical firms may behave differently. Besides, asymmetry and multiplicity of equilibria always come together.

Now we can generalize this example from two argmaxima to finitely-many profit argmaximaX = (x1, ..., xK) K ≥
1, and formulate related notion of a set-valued equilibrium.6

Asymmetric equilibria and set-valued equilibria. Consider K ≥ 1 types of firms’ behavior, and a bundle
z = (λ,X, P,N) consisting of λ > 0 – the level of competition, X = (x1, ..., xK) ∈ RK+ – the vector of consumptions
bringing maximal profit, P = (p1, ..., pK) ∈ RK+ – the vector of prices, and N = (n1, ..., nK) ∈ RK+ – the masses of
firms’ types. This z is called a (free-entry) equilibrium when λ satisfies the free-entry equation (13), X satisfy
optimization necessary conditions (FOC: – (9)) and sufficient conditions (SOC: m′R(x, 1) < 0), prices fit the demand
rule pk = p∗(xk, λ̂) and masses of firms fit the labor balance:

K∑
k

(cxkL+ f)nk = L. (14)

6An extension of this definition is possible: instead of finite K, and finite-dimensional argmaxima vector X = (x1, x2, x3, ...), one
can use the same definition for infinite-dimensional X arising when profit function includes linear intervals. Then the summation in
condition (14) should be understood as an integral. Probably, we can include this infinite-dimensional case into our further theorems
without changing anything in formulations and proofs but the extension is not too important.
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Figure 2: Three-peaks non-concave profit under utility u(x) = 2x− x2 + 0.5x3 − 0.1x4 + 1
3600 sin[4πx].

When K ≥ 2, 0 < xi < xj ∃i, j, this equilibrium is called asymmetric; then simplex Z of all bundles satisfying
all the named conditions under given exogeneous parameters (u, c, L, f) is called a set-valued equilibrium. In the
special case when K = 1 this Z = {z} becomes a singleton and such equilibrium is called unique and symmetric.

After stating the existence theorem, in our comparative statics we would like to reduce generality of possible
equilibrium structures to K ≤ 2. Then the following regularity restriction on utility u will be used to rule out any
degenerate outcomes like three or more global maxima, lying on the same line.

Assumption 2 (κ-regular u). (i) Under λ = 1,∀c, the number of profit argmaxima do not exceed 2:

#| arg max
x∈R+

π(x, 1, c)| ≤ 2 ∀c

(i.e., any line f(x) = ax + b cannot be tangent to the elementary revenue π(x, 1, 0) ≡ xu′(x) more than at two
points simultaneously, dominating the elementary revenue in the sense f(x) ≥ π(x, 1, 0) ∀x). (ii) There can be only
a finite number κ ≥ 0 of magnitudes ck≤κ : #| arg maxx∈R+ π(x, 1, ck)| = 2 bringing multiplicity of argmaxima (i.e.,
there can be only a finite number κ ≥ 0 of the dominating lines with double tangency to π(x, 1, 0)). Such utility is
called κ-regular.

Geometricaly, κ ≥ 0 is the number of sags (non-concave intervals) in the curve of elementary revenue; whenever
κ = 0, the revenue appears strictly concave. More precisely, we can take the convex hull of the undergraph of the
elementary revenue xu′(x), and define function Rconv as the upper envelope of this convex hull, expressed as

Rconv(x) ≡ max
r
conv{r ≥ 0| r ≤ xu′(x)}. (15)

Then, each “sug” is the flat (linear) interval of Rconv, and κ is the number of such intervals. These notions and
the regularity assumption help us in the next section to economize notations by ensuring specific dimentionality of
all asymmetric equilibria (λ̂, X, P,N) = (λ̂, (x̂, x̌), (p̂, p̌), (ň, n̂)) ∈ R7

+ for all values (Lc/f).
Example 2. Figure 2 further explaines Assumption 2. It shows that the number of increasing intervals in the

marginal revenue is not necessarily the number κ of “sags”, i.e., possible asymmetry situations.
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In Fig.2 we use exotic but regular and concave utility function u(x) = 2x − x2 + 0.5x3 − 0.1x4 + 1
3600 sin[4πx].

So, the (normalized) inverse demand u′ decreases. Here the cost value c = 0.883965 crosses marginal revenue (MR)
as much as five times, but only two of these crossings relate to global argmaxima {x̂, x̌} = {0.54966, 1.40512} of
operational profit xu′(x) − cx. This function is the red curve, whereas cost c(x) = 0.883965 is the solid blue line,
and the sloped dashed line shows the tangent line ax+ b “dominating” the elementary revenue π(x, 1, 0) = xu′(x).
This revenue has two intervals where it is not concave (i.e., where MR increases), that generates three local maxima
of profit (k̂ = 3). However, there is only one essential sag in the revenue graph (κ = 1) and it generates only two
global profit maxima x̂, x̌ (K = 2). Indeed, the middle peak in the revenue curve xu′(x) is too small, inessential,
because the dashed line tangent to xu′(x) does not touch the middle peak. In other words, those profit peaks that
cannot become global profit maxima are inessential.

To understand regularity of asymmetric equilibria phenomenon, note that this twin-peak example is non-
degenerate. Ineed, any small changes in utility u do not change the essence of the picture: there always exists
some c yielding twin maxima #|X∗(c)| = 2. Similarly, our guiding example is non-degenerate. More generally, all
functions generating non-monotone MR is a broad class, where each function generates some assymmetric equilibria
under some c with necessity. In contrast, any example with 3 equivalent peaks #|X∗| = 3 is degenerate.

Our further plan is to explore existence of equilibria, reveal their structure, and study their responses to the
market expansion, e.g., population growth, or countries’ integration, or technological shocks.

3 Equilibrium existence and structure
We start with the properties of the profit argmaxima X∗u(λ, c) and optimal per-consumer profit π∗u(λ, c), defined in
(7). Rather obviously, for determining these argmaxima under given λ, c, the following formulations are equivalent:

X∗u(λ, c) ≡ arg max
x∈R+

π(x, λ, c) = arg max
x∈R+

λπ(x, λ, c) : (16)

λπ(x, λ, c) ≡ π(x, 1, λc) ≡ [u′(x)− λc]x. (17)

This reformulation allows us to use further the single-argument mapping X∗u(λc) ≡ X∗u(λ, c) interchangeably with
two-argument one (with a little abuse in notation). Such trick simplifies our reasoning about reaction of X∗u to
changing arguments λ or c, or both. Economically, this equivalency means that increasing k-times the intensity of
competition λ affects the firm’s optimal output Lx exactly in the same way as increasing k-times the marginal cost
c.

Geometricaly (see Fig.2), finding arg maxx∈R+ [u′(x)−λc]x means the following. Slope λc given, the firm should
vary a for finding the highest line a+ λcx tangent to the elementary revenue curve Ru(x) ≡ xu′(x) (painted purple
in Fig.2, whereas a+λcx is painted dashing-blue). Then the tangency points are the argmaxima X∗u(λc). Obviously,
they exist if and only if

λc > MR ≡ lim
x→xmax

R′u(x). (18)

At smaller λc < MR, the objective function [u′(x) − λc]x is undounded when x → ∞; even under λc = MR > 0
this function goes to infinity by Assumption 1.

Now consider the argmaxima comparative statics. When we increase the slope λc, we always induce decrease in
our (set-valued) argmaxima, irrespectively, is the undergraph of [u′(x)− λc]x convex or not.

To express this idea rigorously, let us define three kinds of “decreasing” mapping (set-valued function) X : R→
2R. We call X(λ) monotone nonincreasing if a bigger argument λ̄ > λ̃ implies x ∧ x̃ ∈ X(λ̃) and x ∨ x̃ ∈ X(λ̄) for
every x ∈ X(λ̄) and x̃ ∈ X(λ̃) (where ∧ denotes minimum and ∨ is maximum, thereby the extreme members do
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not increase).7 We call a mapping X(λ) (strictly) decreasing, when its extreme members decrease in the sense

λ̄ > λ̃⇒ min
x∈X(λ̄)

< min
x̃∈X(λ̃)

and max
x∈X(λ̄)

< max
x̃∈X(λ̃)

. (19)

We call X strongly decreasing, when all its selections decrease in the sense

λ̄ > λ̃⇒ x̄ < x̃, ∀x̄ ∈ X(λ̄)∀x̃ ∈ X(λ̃). (20)

The latter (strongest) version of negative monotonicity implies mapping X single-valued everywhere, excluding
isolated points (downward jumps).

To reveal, step by step, all these types of monotonicity (in (λc)) of our argmaximum X∗u, we shall argue as if
the cost were c = 1 (we just economize notation, the same logic works for any c or any changes in λc). We denote
by X̄(λ) all roots of the FOC equation:

X̄(λ) ≡ {x ≥ 0| u′(x) + xu′′(x)− λ = 0}, (21)

this set including global argmaxima X∗u(λ) ⊂ X̄(λ), and maybe some other extrema. Now we can apply the
following lemma, which is a version of a theorem from Milgrom and Roberts (1994, Theorem 1).8 It predicts
monotone comparative statics of both extreme roots x̂ ≤ x̌ of any equation g(x, λ) = 0 with a parameter λ.

Lemma 1. (Monotone roots, Milgrom and Roberts): Assume a partially ordered set Λ, some bounds x > x of
the domain and a parameterized function g(., .) = g(x, λ) : [x, x]× Λ→ R which is continuous and weakly changes
the sign, in the sense [g(x, λ) ≥ 0 & g(x, λ) ≤ 0 ∀λ ∈ Λ]. Then for all λ ∈ Λ:

(i) there exist some non-negative roots of equation g(x, λ) = 0, including the lowest solution x̂ ≡ sup{x|g(x, λ) ≥
0 and the highest solution x̌ ≡ inf{x|g(x, λ) ≤ 0}, these can coincide;9

(ii) if our function g(x, λ) is non-increasing w.r.t. λ everywhere, then both extreme roots x̂(λ), x̌(λ) are non-
increasing w.r.t. λ, i.e., mapping X̄(λ) is a nonincreasing one;

(iii) if, moreover, g(x, λ) is decreasing in λ and strictly changes the sign [g(x, λ) > 0 & g(x, λ) < 0 ∀λ ∈ Λ],
then both extreme roots x̂, x̌ are decreasing, i.e., mapping X̄(λ) is a decreasing one.

The intuition behind this lemma is simple: when we shift down any continuous curve whose left wing is above
zero and the right one is below—the roots should decline. More subtile fact is that when some isolated root x̌
disappears or emerges, the jump goes in the same direction as all continuous changes, i.e., downward.

We apply this lemma to the (continuous) auxiliary function g gained from FOC of π(x, 1, λ):

g(x, λ) ≡ [u′(x) + xu′′(x)− λ],

using domain Λ = [0,∞). We conclude that mapping X̄ is “nonincreasing”. We would like to enforce this property;
to find “decreasing” X̄ at those λ and domains [x, x], where we can apply claim (iii). Locally, this task is easy: at a
given λ, we can apply (iii) to any vicinity (x, x) 3 x́ > 0 of any positive local argmaximum x́|g(x́, λ) = 0—whenever
strict SOC holds. The latter means that u′(x) +xu′′(x) decreases at x́, i.e., it is an isolated argmaximum. Thereby,
any positive local argmaximum x́ = x́(λ) satisfying strict SOC—locally decreases w.r.t. λ.

Searching for globally decreasing X̄, on a positive ray we would like to identify a subinterval (λmin, λmax) ⊂
[0,∞) where claim (iii) is applicable. This amounts to finding an area where all roots of equation (21) are positive
and finite, under Assumption 1.

7This terminology follows Milgrom and Shannon (1994), who use it for lattices: “strong set order” ≤s says that X ≤s Y (Y is higher
than X), if for every x ∈ X and y ∈ Y , x ∧ y ∈ X and x ∨ y ∈ Y . Such order requires our simple mapping (λ,X) ⊂ R2 to be a lane
without any increases in its extreme members. Similar is the notion of nondecreasing mapping, actually used in Milgrom and Shannon.

8Their original Theorem 1 differs in using function g(x, t) non-decreasing in t, continuous “but for upward jumps”, and domain
[x, x] = [0, 1]. This makes a minor difference.

9Naturally, when the roots are finite, x̂(λ) = min{x|g(x, λ) = 0}, x̌(λ) = max{x|g(x, λ) = 0}).
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Lowest λ yielding x ∈ (0,∞). Consider the case when our elementary revenue Ru(x) = xu′(x) has a finite
global argmaximum xmax (that implies satiable demand). Then, obviously, all positive λ enable finite solutions
to (21), i.e., we can take the lower bound of the needed interval as λmin = MR = u′(xmax) + xmaxu

′′(xmax) = 0
(using notations from (3)). Similarly, under unsatiable demand (xmax =∞) but zero limiting value limx→∞(u′(x)+
xu′′(x)) = 0, the infimum of all λ bringing finite roots is λmin = MR = 0. The third possible case is when at
infinity R′u remains positive: our parameter MR > 0 (an example is utility u =

√
x + x, in such cases this MR

becomes the parameter delimiting the situations λ where mapping X(λ) is finite). However, the outcome is the
same and we conclude that anyway we must take (zero or positive) lower bound λmin = MR when we search for
an interval (λmin, λmax) bringing positive finite roots of function g.

Highest λ yielding x ∈ (0,∞). Recall notation MR from (2) and consider the case of finite derivative at
the origin (MR < ∞), that implies chock-price. Then all sufficiently high parameters λ ≥ MR should bring zero
solutions x̂(λ) = x̌(λ) = 0 to (21), for lower parameters the solutions are positive. In the case of infinite derivative
MR =∞ all λ must bring positive x. We conclude that anyway we must take finite or infinite λmax = MR as an
upper boundary, that determines the open interval

Λ̂ ≡ (λmin, λmax) ≡ (MR,MR),

which brings positive finite roots of g. It also strictly decreases in x at both boundaries (x, x), because of strict
concavity of xu′(x) at 0 and at xmax (Assumption 1). This ensures that outside interval Λ̂ the roots of g cannot be
positive and finite, that we use in Theorem 1.

Now we can apply claim (iii) to this interval Λ̂, because our function g(x, λ) ≡ [u′(x)+xu′′(x)−λ] takes positive
value MR − λ > 0 at the lower boundary x = 0 and negative value MR − λ < 0 at x = xmax (for all λ ∈ Λ̂).
Moreover, g remains strictly decreasing in λ. Thus, our function g(x, λ) satisfies the boundary conditions and
monotonicity conditions needed for Lemma 1-(iii). This implies strict decrease of the extreme roots x̂(λ) ≤ x̌(λ) on
Λ̂.

It must be added that both extreme roots x̂(λ) ≤ x̌(λ) of (21) are the local maxima (not minima) of function
π(x, 1, λ) ≡ xu′(x) − λx, because of SOC. Indeed, by definition of x̂, x̌, function g(x, λ) > 0 must be (strictly)
decreasing in some left vicinity of the left point x̂, and in some right vicinity of x̌. Using continuous differentiability
of xu′(x) (Assumption 1) we expand this decrease to complete (left and right) vicinities of each point x̂, x̌. This
decrease of g(x, λ) ≡ π′(x, 1, λ) means SOC. We can summarize our arguments as follows.

Proposition 1 (Monotone local argmaxima). Each local argmaximum of the normalized profit π(x, 1, λ) is
nonincreasing w.r.t. parameter λ ≥ 0. Moreover, the local argmaximum decreases when being positive and finite,
which is guaranteed only on interval Λ̂ ≡ (MR,MR). In the case of (sufficiently small) positive parameters
λ ∈ (0,MR] all argmaxima are infinite, under (sufficiently big) finite λ ∈ [MR,∞) all argmaxima are zero.

Now, to establish similar monotonic behavior of global argmaxima set X∗u we use “single crossing” notion and
Theorems 4, 4’ from Milgrom and Shannon (1994) simplified here for our case of real parameter t and unidimensional
real domain S(t) of maximizers.

Consider a function g : R2 → R. If g(x′, t”) ≥ g(x”, t”) implies inequality g(x′, t′) > g(x”, t′)∀(x′ > x”, t′ > t”),
then g satisfies the strict single crossing property w.r.t. couple (x; t) of arguments. Similarly, single crossing
property means

[g(x′, t”) ≥ g(x”, t”)⇒ g(x′, t′) ≥ g(x”, t′)∀(x′ > x”, t′ > t”) and

g(x′, t”) > g(x”, t”)⇒ g(x′, t′) > g(x”, t′)∀(x′ > x”, t′ > t”)]

(essentially, in these two versions of single-crossing notion, parameter t strictly or weakly amplifies monotonicity of
g w.r.t. x, alike supermodularity).

Lemma 2 (Monotone argmaxima, Milgrom and Shannon). Consider a domain S(t) : R → 2R which is non-
shrinking w.r.t. t (nondecreasing by inclusion) and a function g : R2 → R. If g satisfies the single crossing property
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in (x; t), then arg maxx∈S(t) g(x, t) is monotone nondecreasing in t. If g satisfies the strict single crossing property
in (x; t), then every selection x∗(t) from arg maxx∈S(t) g(x, t) is monotone nondecreasing in t.

Unfortunately, this lemma does not predict strict increase that we need. But, it is important for us that the
latter claim about all selection implies that all points of multi-valued g(., t) are “isolated”, in the sense that there is
no open interval of multi-valuedness (single-valuedness holds “everywhere except isolated poins”). The third result
that we need—is similar to “envelope” Theorems 1, 2 from Milgrom and Segal (2002) but formulated here for more
simple conditions as (trivial) Lemma 3.

Lemma 3 (Monotone maxima, Milgrom, Segal) Consider a compact choice set X, a continuous function g(x, t) :
X× [0, 1]→ R and its maximal value π∗(t) = supx∈X g(x, t). If π(x, t) continuously decreases in t for all x ∈ X, t ∈
(0, 1), then its maximal value π∗(t) continuously decreases in t ∈ (0, 1).

Now, using our notations MR,MR, xmax and new notions

λcmin ≡MR/c, λcmax ≡MR/c, Rmax ≡ xmaxu′(xmax),

(that can become infinite) we formulate and prove the result we were long driving to.
Proposition 2. (Monotone argmaxima and maxima): Consider some given c > 0 and parameter λ increasing

in the open interval Λ(c) = (λcmin, λcmax). Then on Λ(c) the argmaxima set X∗u(λc) ≡ arg maxx[xu′(x) − λcx]
is non-empty and strongly decreases from xmax to 0 (i.e., all its selections decrease); simultaneously the objective
function π∗u(1, λc) ≡ x[u′(x)− λc] continuously decreases from Rmax to 0. Outside Λ(c), under smaller parameter
λ ≤ λcmin all argmaxima and maxima remain infinite, under bigger λ ≥ λcmax all argmaxima and maxima remain
zero.

Proof. Using S ≡ R+, we can apply Lemma 2 to our auxiliary function g(x, t) ≡ π(x, 1,−t) with argument
λc = −t > 0 because evident is strict single crossing property: it means increase of π′x(x, 1,−t) = u′(x) +xu′′(x) + t
w.r.t. t. Thereby, whenever X∗u(λc) exists, every selection x∗(λc) from X∗u(λc) is monotone nonincreasing when
x > 0. This yields almost-everywhere single-valued X∗u(λc), i.e., absence of any open intervals for λ maintaining
multi-valued X∗u(λc). In other words, X∗u(λc) is single-valued, except for some “isolated” downward jumps. In
essence, this fact follows from smoothness of xu′(x) (Assumption 1). Smoothness makes function π′x(x, 1,−t) single-
valued and strict single crossing property applicable (geometricaly, the reason for strictly decreasing argmaximum
is that a smooth set—undergraph of xu′(x)—cannot have multiple tangent slopes λc at a given point x).

To transform the monotonicity found into strongly decreasing X∗u(λc) on interval Λ(c) (at finite positive X∗u),
we apply Proposition 1 used for any local maximum. Since global maxima should be among the local ones, in the
intervals of single-valued X∗u = x̂ = x̌ they must strictly decrease. The remaining isolated points of multi-valued X∗u
are the points of downward jumps, as we have found. Thus, we conclude that mapping X∗u(λ) strongly decreases
on interval Λ(c), remaining infinite for smaller λ and remaining zero for higher λ.

Now we turn to the value function and apply Lemma 3 to ensure monotonicity of maximal π∗u(1, λc).10 Indeed,
the objective function πu(x, 1, λc) continuously decreases w.r.t. λ everywhere under positive x. Thereby its optimal
value π∗u also continuously decreases when positive, i.e., on our interval (λcmin, λcmax). The optimal value π∗u → 0
when λ→ λcmax because of monotonicity and zero lower bound of profit found in Proposition 1. So, continuity at
the upper boundary of our interval Λ(c) is maintained. Similar logic proves continuity at the lower boundary when
MR = 0. Only in special case when MR > 0, the continuity of π∗u becomes more delicate, questionable at point
λcmin = MR/c. Continuity could be violated for a utility like u(x) = ln(x+ a)− ln(a) + bx (a, b > 0), because here
the maximal profit value remains bounded from above for all λ ≥MR/c = b/c but abruptly jumps to infinity under
any lower parameter λ < MR/c. However, “revenue unboundedness” requirement (3) in Assumption 1 excludes such
exotic utilities. Using Lemma 3 with any compactified domain X ≡ [0, x̄] under any x̄, we guarantee a continuous

10For revealing monotonicity of π∗u(λ, c) we cannot use more standard envelope theorems since π∗u appears non-differentiable at the
points where X∗ make jumps (see Section 4).
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response of π∗u(1, λc) to decreasing λ→ 0. Therefore, if there were a jump of π∗u under open domain X ≡ [0,∞) it
would occur also on some compactified domain, that contradicts our findings. Thus, the maximal value of π∗u(1, λc)
decreases continuously from MR to 0 under increasing λc ∈ [0,∞). This completes the proof. Q.E.D

Corollary 1. The value of maximal per-consumer profit π∗u(λ, c) ≡ x∗(λ)[u
′(x∗(λ))/λ− c] continuously decreases,

changing from value MR/λcmin to 0 on interval Λ(c); it remains zero on [λcmax,∞) (whenever this interval exists);
it remains infinite on [0, λcmin) (whenever this interval exists); and anyway

lim
λ→0

π∗u(λ, c) =∞, lim
λ→∞

π∗u(λ, c) = 0. (22)

This corollary is obvious, we just transform function π∗u(1, λc) into π∗u(λ, c).

Based on these facts, equilibrium existence can be stated, together with uniqueness of the equilibrium λ.
Theorem 1. Under Assumption 1 and any cost/population parameters (c > 0, L > 0, f > 0) there exists a

unique equilibrium value λ̂ that generates some nonempty set (λ̂, X, P,N) of (possibly-asymmetric) equilibria. Each
equilibrium in this set is positive in the sense λ̂ > 0, π∗u(λ̂, c) > 0, X 63 0.

Proof. We can apply Lemma 1 to decreasing maximal per-consumer profit function g(λ) ≡ π∗u(λ, c) − f/L
on interval (λcmin, λcmax), based on g continuity and its bounds of change (Corollary 1). So, some positive root
λ̂ ∈ (λcmin, λcmax) of free-entry equation must exist. In essence, it equalizes a positive investment f with optimal
operational profit in the sense Lπ∗u(λ̂, c) = f > 0, that’s why λ̂ is positive. However, to apply Lemma 1, we must
ensure that all equilibrium notions are valid. Indeed, on (λcmin, λcmax) the inverse demand p∗(x, λ, c) is well-defined,
as well as profit argmaxima and maxima.

To reveal positivity of all equilibrium variables, from positive X∗u(λ̂, c)� 0, one can calculate positive equilibrium
prices pk = p∗(xk, λ̂, c)∀xk ∈ X, using the inverse demand function. The remaining element of the equilibrium
definition is such a vector N = (n1, ..., nK) that satisfy the labor balance (14). All coefficients of this linear
equation being positive, we confirm existence of a hyperplane of admissible vectors (n1, ..., nK), which is truncated
to an admissible polygone by the positivity requirement (n1, ..., nK) ≥ 0. Thus, all equilibrium components exist.

Uniqueness of equilibrium λ̂ follows from strict monotonicity of π∗u at points with positive finite profit: 0 <
π∗u(λ, c) <∞. Q.E.D.

Based on these facts and “regular utility” assumption, it is easy to establish now more definite equilibrium
structure: unique λ̂, two groups of firms and an interval (n̂, ň) of firms’ masses.

Theorem 2. Under Assumption 1 and Assumption 2 (κ-regular u), the set-valued equilibrium contains one or
two types of firms behavior. It consists of a unique marginal utility of income λ̂, a unique couple ((x̂, p̂), (x̌, p̌)) of
quantity-price bundles: x̂ ≤ x̌, p̂ ≥ p̌, and an interval of firms’ masses (n̂, ň) : n̂ ≥ ň, namely, all the masses that
satisfy the labor balance (12) with the couple ((x̂, p̂), (x̌, p̌)). This interval of masses degenerates into a point under
coincidence of points (x̂, p̂) = (x̌, p̌).11

Proof. The uniqueness of λ̂ is already stated. We also had discussed already (in connection with the equi-
librium definition) a polygone of admissible vectors (n1, ..., nK) of firms’ masses. What remains is to ensure the
dimensionality K ≤ 2: not more than two global maxima of profit, i.e., not more than two types of firms’ behavior.
This fact was already explained when discussing Example 2: it amounts to Assumption 2 on regular utility. Thus,
the polygone of masses is an interval. Q.E.D.

11Thus, n becomes a point only when equilibrium becomes symmetric but under asymmetry x̂ < x̌ the masses (n̂, ň) and the total
mass of firms n = n̂+ ň remain ambiguous.

13



4 Comparative statics under growing market: monotonicity and catas-
trophes

This section shows an example of multiplicity and asymmetry, finds how numerous can be the asymmetry moments
under growing population (or decreasing fixed cost) and clarifies the direction of changes in consumption, price and
variety.

Number of jumps. Based on κ-regular utility function, the following theorem establishes the number of
jumps (catastrophes) in consumption and price during the “complete” path of comparative statics, i.e., when the
relative market size L/f grows from zero to infinity. Surprisingly, under non-globally concave profit such jumps are
guaranteed, being accompanied by equilibria asymmetry. After proving this, we explain the underlying behavior of
the local argmaxima, and turn to equilibria monotonicity during such market evolution.

Theorem 3. Let Assumption 1 and Assumption 2 hold, with κ ≥ 0. Then under any constant marginal cost
c, there are exactly κ critical values of relative market size L/f ∈ (0,∞) that bring equilibria multiplicity and
asymmetry, being also points of discontinuity of equilibria w.r.t L/f .

Corollary 2. (i) For equilibrium uniqueness and symmetry under all c, f, L > 0, sufficient is strict concavity
of the elementary revenue function xu′(x) (i.e., κ = 0). (ii) This strict concavity condition is also necessary, in
the sense that under non-concave xu′(x), for any cost c > 0 there exists some relative market size L̂/f > 0 that
generates equilibria assymetry, multiplicity and discontinuity.

Proof. We have shown already that the equilibrium value λ̂ = λ̂(L/f) of marginal utility of income is unique
and exists, i.e., the equilibrium mapping λ̂(L/f) : R+ 7→ R+ is well-defined and single-valued. Now we would like
to ensure that λ̂(L/f) continuously changes from λcmin ≥ 0 to λcmax over the domain L/f ∈ [0,∞). Obviously,
well-defined and continuous is the (equilibrium per-consumer) profit mapping π̄u,c(L/f) ≡ π∗u(λ̂(L/f), c) ≡ f/L,
inversely dependent on the market size. Our Proposition 2 claims that function π∗u(λ, c) continuously decreases in
λ. Then, we can apply Lemma 1 to equation g(λ, L/f) ≡ π∗u(λ, c) − f/L = 0 (with L/f as a parameter and λ

as argument). Therefore, the unique solution λ̂(L/f) to this zero-profit equation must increase w.r.t. L/f from
value λcmin ≥ 0 to λcmax ≤ ∞, without reaching these borders (using Theorem 1). Additionally, λ̂(L/f) increases
continuously, because the maximal value function π∗u(λ, c) continuously decreases.

Therefore, λ takes all values from (λcmin, λcmax). Further, to get the number of jumps, we can use equivalency
(16) between the real profit maximization and the maximization of the auxiliary function (17). We obtain the
number of possible multiplicity instances directly from Assumption 2 on κ-regularity (see also geometry reasoning
below). Corollary is evident. Q.E.D.

Let us explain now non-differentiability of π̄∗u,c(L/f) and the geometry of our comparative statics. For any value
of λ that brings two local maxima, we can define two functions, which are locally-maximal values of (multiplied by
λ) profit (16), i.e., auxiliary functions12

π̂∗(λc) ≡ λπ(x̂(λc), λ, c), π̌∗(λc) ≡ λπ(x̌(λc), λ, c).

The first function uses the left local argmaximum x̂ (the leftmost solution to FOC described in Lemma 1) while π̌∗
exploits the right local argmaximum x̌. Somewhat loosely, we use the same notations x̂, x̌ without specifying are
they argmaxima or not.

To describe the behavior of π̂∗(.), π̌∗(.), we apply the usual envelope theorem, and conclude (standardly) that
the absolute value of the derivative of profit w.r.t. cost—is equal to the demand value x at the point studied. I.e.,

12As we have seen, there is one-to-one correspondence between the argmaxima of three functions x ∈ arg maxx∈R+ π(x, 1, λ) =

λπ(x, λ, 1)⇔ x ∈ arg maxx∈R+ π(x, λ, 1).
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Figure 3: Two locally-optimal λ-adjusted profit functions π̂∗(λc), π̌∗(λc) .

whenever there are two local argmaxima x̂ < x̌, it must be that

dπ̂∗(λc)
dλ

= −x̂(λc) >
dπ̌∗(λc)
dλ

= −x̌(λc). (23)

In other words, the left locally-optimal value π̂∗(λc) everywhere decreases slower than the right value π̌∗(λc).
Guiding example continued. Such decrease is illustrated by Fig. 3, where the global maximum of λπ∗u(λ, c)

is the upper envelope of these two locally-optimal loci π̂∗(λc), π̌∗(λc).
Because of unequal slopes (23), these two loci can cross only once at some point λ̂ (this proves the number κ of

jumps). Besides, for all small λ < λ̂ the bigger root x = x̌ of FOC remains the true global argmaximum, whereas
for all big λ > λ̂ the smaller root x̂ becomes the global argmaximum. Then the jump poes downward. Thus, under
regular utility with κ = 1 there is exactly one point λ̂ generating multiple profit argmaxima during the evolution
of λ from 0 to ∞. It is also evident why our profit function is not differentiable at this point.

Equilibria monotonicity . Generally, both valid roots of equation (9), i.e., both local argmaxima x̂(λ), x̌(λ)
must decrease w.r.t. λ (Proposition 1). Really, one can observe such negative monotonicity of both local argmaxima
x̂(λ), x̌(λ) in our example in Fig. 4. Here, we illustrate multiplicity of equilibria with costs f = 0.0025, c =
0.0002555. To derive comparative statics, we vary population L from 0 to ∞.13

Resulting comparative statics of consumption x of each variety w.r.t. L is presented in Figures 4, 5 together with
related evolution of price and mass of firms:

Specifically, we have found the unique switching point L̂/f ≈ 10.04 and related two boundary equilibria among the
interval of them: (λ̂, x̌, x̂, p̌, p̂, n̂, 0) and (λ̂, x̌, x̂, p̌, p̂, 0, ň), differing only in vector (n̂, ň) and gross utility U :

13Calculation technique is as follows: we first compute related marginal revenue functionmR(xj). Inverting it on its intervals of mono-
tonicity, we find two locally-optimal quantities x̂(λc), x̌(λc). Substituting these x̂(λc), x̌(λc) into the operational profit function (13)
we obtain two branches of the adjusted profit function, π̂∗(λc), π̌∗(λc) and their upper envelope π∗(λ, c) = max{π̂∗(λc)/λ, π̌∗(λc)/λ}.
It appears monotone decreasing and continuous, so from equation (13) we calculate the unique root, equilibrium value λ̂(L/f) which is
an increasing continuous function of L/f , and derive related consumptions and prices. On each interval of L we select the valid (small
or big) consumption value relying on smaller or bigger π̂∗(λc) ≶ π̌∗(λc).
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Figure 4: Dependence of consumption and price upon population L.

Figure 5: Changes in welfare and mass of firms.

(1) x̂ = 0.652644395317, x̌ = 12.8961077968, p̂ = 0.000284323031025, n̂1 = 272.727734586, U1 = 5081.514933136;

(2) x̂ = 0.652644395317 ,x̌ = 12.8961077968, p̌ = 0.0006479943306508, ň2 = 2364.570031198, U2 = 6549.082752038.

There is an interval of asymmetric equilibria between these two extreme equilibria under this (L̂/f) and related λ̂. On
this interval low and high consumptions x̂, x̌ remain the same, whereas the set for masses of firms has the form:

N = {(ň, n̂) ≥ 0| ň = 2364.570031198− 8.670075431758 n̂}.

Here some firms choose producing high quantity x̌ whereas other firms choose low quantity x̂.

In this example one can observe that growing market and related entry of new firms push per-variety consumption
down monotonically with only one jump (dicontinuity) at some point L̂/f ≈ 10.04 of this evolution. Under small
market size L/f < 10.04, the global profit maximum is attained at higher consumption x̌ and the mass of firms is
relatively low. But when L/f exceeds 10.04, all firms switch to producing smaller quantity x̂ because their mass
jumps up. By Theorem 3, such dicontinuous behavior of equilibria is not a degenerate example, but a general rule
in all situations with non-concave profit.

Turning from this example of market size impact to general case, we formulate now a theorem about set-valued
monotone comparative statics, similar to single-valued comparative statics in ZKPT. We use again our monotonicity
notions for mappings: X(L) strongly decreases when all its selections decrease.

Theorem 4. Under Assumption 1, an increase in the relative market size L/f induces several changes in the
set-valued equilibria: (i) the marginal utility of money λ̂(L/f) increases with elasticity ru(x); (ii) the consumption
mapping X̄u(L/f) for each variety is a closed one and strongly decreases; (iii) the set-valued total mass of firms
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(n1 + n2 + ...) : ∀n ∈ N strongly increases; (iv) the price p(L/f) strongly decreases on any interval of single-valued
X̄u(L/f) where r′u(x) > 0, and conversely, price strongly increases on any interval where r′u(x) < 0; (v) at any point
(L/f) with multi-valued X∗u(L/f)—the price always jumps up; (vi) whenever a firm’s output Lx is single-valued, it
changes oppositly to price, whereas at the jumpt it jumpes down.14

Proof. Claim (i) about increasing λ has been verified when proving Theorem 3. Moreover, we can derive the
elasticity E

Lλ(L) of equilibrium λ. We totally differentiate w.r.t. L the free entry condition

π = q
u′(q/L)
λ(L)

− cq − f = 0.

We can ignore q′L due to the envelope theorem. We get

π′L = −q2u
′′(q/L)
λ(L)L2

− qu′(q/L)
λ2(L)

λ′(L) = 0⇒ L
λ′(L)
λ(L)

= −q u
′′(q/L)

u′(q/L)L
,

and obtain the needed elasticity

E
Lλ(L) = L

λ′(L)
λ(L)

= − q
L
· u
′′(q/L)
u′(q/L)

= ru(q/L).

Now, using X̄u(L/f) = X∗u(λ̂(L/f)), claim (ii) actually becomes equivalent to strongly decreasing mapping of
profit argmaxima X∗u(λ) which was stated in Proposition 2. Additionally, mapping X∗u(λ) under our assumptions
is closed (upper-semi-continuous on every compact set), being the argmaximum of a continuous function on a
compact set, or, more correctly, a set [0,∞) compactifiable under any given λ. Since λ̂(L/f) is continuous, so,
X̄u(L/f) = X∗u(λ̂(L/f)) is closed too.

Claim (iii) about the firms’ masses follows from “isolated” points of multi-valued argmaximum X∗u(λ), the same
property being transferred to X̄u(L/f). Respectively, at the open intervals of single-valuedness, unique x̄(L/f)
decreases in such a way, that (using labor balance (12)) related mass n = N increases, by Proposition 2 from
ZKPT.

What remains is to find how vector N of admissible masses (n1, n2, ...) of different firms behave at any point of
jump, denoted here L̄f ≡ L̄/f̄ . It is sufficient to note that to the left and to the right from such point L̄f , unique
consumption x̄(L/f) satisfies the labor balance in the form cx̄+f/L = 1/n, and x̄ makes a downward jump. At the
same time, parameter f/L in the left and right vicinities of this point L̄f remains essentially the same. Thereby,
the jump in unique equilibrium n in these vicinities is upward in the sense n ≡ limL/f→L̄f (−) < n̄ ≡ limL/f→L̄f (+).
Using closedness of the equilibrium mapping, both these limits belong to the vector N̄ = (n1, n2, ...) of admissible
masses of firms at the limiting point L̄f itself. Therefore, amongst all N̄ = (n1, n2, ...) satisfying the labor balance
(12), the supremum n̄ = 1/(cx̂+ 1/L̄f ) and the infimum n = 1/(cx̌+ 1/L̄f ) also must belong to the right and the
left limiting values of N , respectively.

(iv) Similar reasoning with limits can be applied to prices, therefore the set of possible prices P (L̄f ) at the
jumping point—contains the limits of prices taken from the left and from the right. The conclusion about prices is
simple on any intervals where X∗u is a singleton, because the direction of price changes just follows from Proposition
2 from ZKPT: prices go down when r′u > 0 and up in the opposite case.15

14Additionally, the equilibrium markup M = (p− c)/p = ru(x) always behaves like price.
15It seemingly contradicts the picture in Fig.4: here price increases before the jump but decreases after it. However, actually function

ru(x) can be checked to decrease at all arguments x(L/f) : L < L̂ to the left from the jump, and to increase on the right interval
L > L̂. Thereby on the left interval including the jump point L̂/f ≈ 10.04 the claim holds true with r′u < 0, and on the right interval
(excluding the jump point where r′u(x) = 0) it holds true either, with r′u > 0.
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(v) By contrast, at the multi-valued situation, any price jump always occurs upward, because two (equi-profitable)
consumptions are compared as x̂ < x̌, whereas the inverse demand function decreases, so, p̂ = p∗(x̂) > p̌ = p∗(x̌).
Thus, under growing market, this jump goes from the point p̌ to the higher point p̂.

(vi) As to the behavior of output, on intervals of single-valuedness it is revealed in ZKPT: q(L) increases under
r′u > 0 (increasingly-elastic demand) and decreases under opposite condition. Further, to establish the direction of
jump at a multi-valued point, we recall that q = Lx and L remains constant at a point, whereas x jumps down. So,
q jumpts down.

This completes the proof. Q.E.D.

Let us explain again the strange direction of the price changes (following ZKPT and Intro). Under r′u < 0 we
observe some counter-intuitive anti-competitive effect : growing market attracts more firms but still all prices go
up. The explanation lies in the demand convexity: (only) whenever convexity is too strong, the firms compensate
their decreasing output with growing prices. Now we extended the same mechanism of anti-competitive effect to
set-valued equilibria also. Indeed, convexity is even stronger at the points of jumps. In addition, at such points the
price increase becomes abrupt.

Such discontinuity of equilibria evolution also seems a paradoxical outcome. It means catastrophic jumps in
consumptions and prices in response to smooth shifts in exogenous parameters. Though the jump itself occurs
typically only at one point among the continuum of parameters L determining the market evolution, but we have
found that under non-monotone marginal revenue—hitting such point sooner or later during complete evolution is
guaranteed ! Even on any finite interval [L,L] of changing parameters the probability of catastrophes is not negligible.

Confirming or exculding catastrophes appears now as an empirical question. Economically, the possibility of
non-monotone marginal revenue looks quite plausible. Mathematicaly, any demand curve that reminds a piece-wise
linear function (flat, then having a kink and again flat) must generate a non-monotone marginal revenue. Then, any
gross demand summed up from linear demands of two distinct consumer groups—must generate a non-monotone
marginal revenue. These considerations increase our faith in the possibility of catastrofhic effects reactions in a
monopolistically-competitive market. They explain, that a jump may happen, in particular, when a large group of
consumers coherently comes out of the market in response to changes (not in our homogenous model).

5 Conclusion
First of all, this paper satisfied our curiousity about robustness of the market theory: what happens when we
get rid of technically convenient assumption of profit “concave everywhere”, or, equivalently, of monotone marginal
revenue? It turns out that equilibria existence remains, but equilibria become asymmetric and get set-valued
structure. Importantly, the comparative statics of equilibrium-set in response to growing market (for instance,
population growth or countries integration) remains similar to what we know about single-valed equilibria.

Second, new effects found are catastrophes, i.e., jumps of outputs and prices in response to small shifts in
population or costs. Surprisingly, such jumps must happen whenever marginal revenue is non-monotone, i.e., the
demand has kinks. This case looks natural under distinct groups of demands. Thus, abrupt market reactions to
small parameters shifts look now not quite unrealistic.

If we expand the approach with non-concave profit to heterogenous firms, the same effect of “catastrophes”
should manifestate itself in the “gap” between exporting and non-exporting firms, or those engaged in R&D and
others. Such clusterization looks interesting.
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